Sadalīt reizinātājos
\left(x+3\right)\left(2x+5\right)
Izrēķināt
\left(x+3\right)\left(2x+5\right)
Graph
Koplietot
Kopēts starpliktuvē
a+b=11 ab=2\times 15=30
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā 2x^{2}+ax+bx+15. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,30 2,15 3,10 5,6
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 30.
1+30=31 2+15=17 3+10=13 5+6=11
Aprēķināt katra pāra summu.
a=5 b=6
Risinājums ir pāris, kas dod summu 11.
\left(2x^{2}+5x\right)+\left(6x+15\right)
Pārrakstiet 2x^{2}+11x+15 kā \left(2x^{2}+5x\right)+\left(6x+15\right).
x\left(2x+5\right)+3\left(2x+5\right)
Sadaliet x pirmo un 3 otrajā grupā.
\left(2x+5\right)\left(x+3\right)
Iznesiet kopējo reizinātāju 2x+5 pirms iekavām, izmantojot distributīvo īpašību.
2x^{2}+11x+15=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times 15}}{2\times 2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-11±\sqrt{121-4\times 2\times 15}}{2\times 2}
Kāpiniet 11 kvadrātā.
x=\frac{-11±\sqrt{121-8\times 15}}{2\times 2}
Reiziniet -4 reiz 2.
x=\frac{-11±\sqrt{121-120}}{2\times 2}
Reiziniet -8 reiz 15.
x=\frac{-11±\sqrt{1}}{2\times 2}
Pieskaitiet 121 pie -120.
x=\frac{-11±1}{2\times 2}
Izvelciet kvadrātsakni no 1.
x=\frac{-11±1}{4}
Reiziniet 2 reiz 2.
x=-\frac{10}{4}
Tagad atrisiniet vienādojumu x=\frac{-11±1}{4}, ja ± ir pluss. Pieskaitiet -11 pie 1.
x=-\frac{5}{2}
Vienādot daļskaitli \frac{-10}{4} līdz mazākajam loceklim, izvelkot un saīsinot 2.
x=-\frac{12}{4}
Tagad atrisiniet vienādojumu x=\frac{-11±1}{4}, ja ± ir mīnuss. Atņemiet 1 no -11.
x=-3
Daliet -12 ar 4.
2x^{2}+11x+15=2\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-3\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet -\frac{5}{2} ar x_{1} un -3 ar x_{2}.
2x^{2}+11x+15=2\left(x+\frac{5}{2}\right)\left(x+3\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.
2x^{2}+11x+15=2\times \frac{2x+5}{2}\left(x+3\right)
Pieskaitiet \frac{5}{2} pie x, atrodot kopsaucēju un saskaitot kopā skaitītājus. Pēc tam, ja iespējams, saīsiniet daļskaitli līdz mazākajiem locekļiem.
2x^{2}+11x+15=\left(2x+5\right)\left(x+3\right)
Noīsiniet lielāko kopējo reizinātāju 2 šeit: 2 un 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}