Atrast m
m=\frac{\sqrt{2}}{4}\approx 0,353553391
m=-\frac{\sqrt{2}}{4}\approx -0,353553391
Koplietot
Kopēts starpliktuvē
8m^{2}=1
Savelciet 2m^{2} un 6m^{2}, lai iegūtu 8m^{2}.
m^{2}=\frac{1}{8}
Daliet abas puses ar 8.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Izvelciet kvadrātsakni no abām vienādojuma pusēm.
8m^{2}=1
Savelciet 2m^{2} un 6m^{2}, lai iegūtu 8m^{2}.
8m^{2}-1=0
Atņemiet 1 no abām pusēm.
m=\frac{0±\sqrt{0^{2}-4\times 8\left(-1\right)}}{2\times 8}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 8, b ar 0 un c ar -1.
m=\frac{0±\sqrt{-4\times 8\left(-1\right)}}{2\times 8}
Kāpiniet 0 kvadrātā.
m=\frac{0±\sqrt{-32\left(-1\right)}}{2\times 8}
Reiziniet -4 reiz 8.
m=\frac{0±\sqrt{32}}{2\times 8}
Reiziniet -32 reiz -1.
m=\frac{0±4\sqrt{2}}{2\times 8}
Izvelciet kvadrātsakni no 32.
m=\frac{0±4\sqrt{2}}{16}
Reiziniet 2 reiz 8.
m=\frac{\sqrt{2}}{4}
Tagad atrisiniet vienādojumu m=\frac{0±4\sqrt{2}}{16}, ja ± ir pluss.
m=-\frac{\sqrt{2}}{4}
Tagad atrisiniet vienādojumu m=\frac{0±4\sqrt{2}}{16}, ja ± ir mīnuss.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Vienādojums tagad ir atrisināts.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}