2 d n ^ { 3 } = c n ^ { 3 }
Atrast c
\left\{\begin{matrix}\\c=2d\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&n=0\end{matrix}\right,
Atrast d
\left\{\begin{matrix}\\d=\frac{c}{2}\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&n=0\end{matrix}\right,
Koplietot
Kopēts starpliktuvē
cn^{3}=2dn^{3}
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
n^{3}c=2dn^{3}
Vienādojums ir standarta formā.
\frac{n^{3}c}{n^{3}}=\frac{2dn^{3}}{n^{3}}
Daliet abas puses ar n^{3}.
c=\frac{2dn^{3}}{n^{3}}
Dalīšana ar n^{3} atsauc reizināšanu ar n^{3}.
c=2d
Daliet 2dn^{3} ar n^{3}.
2n^{3}d=cn^{3}
Vienādojums ir standarta formā.
\frac{2n^{3}d}{2n^{3}}=\frac{cn^{3}}{2n^{3}}
Daliet abas puses ar 2n^{3}.
d=\frac{cn^{3}}{2n^{3}}
Dalīšana ar 2n^{3} atsauc reizināšanu ar 2n^{3}.
d=\frac{c}{2}
Daliet cn^{3} ar 2n^{3}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}