Atrast x (complex solution)
x=\frac{-\sqrt{29}i+1}{2}\approx 0,5-2,692582404i
x=-4
x=\frac{1+\sqrt{29}i}{2}\approx 0,5+2,692582404i
Atrast x
x=-4
Graph
Koplietot
Kopēts starpliktuvē
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis 60 un ar q tiek dalīts vecākais koeficients 2. Uzskaitiet visus kandidātus \frac{p}{q}.
x=-4
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
2x^{2}-2x+15=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet 2x^{3}+6x^{2}+7x+60 ar x+4, lai iegūtu 2x^{2}-2x+15. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 2, b ar -2 un c ar 15.
x=\frac{2±\sqrt{-116}}{4}
Veiciet aprēķinus.
x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Atrisiniet vienādojumu 2x^{2}-2x+15=0, ja ± ir pluss un ± ir mīnuss.
x=-4 x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Visu atrasto risinājumu saraksts.
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis 60 un ar q tiek dalīts vecākais koeficients 2. Uzskaitiet visus kandidātus \frac{p}{q}.
x=-4
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
2x^{2}-2x+15=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet 2x^{3}+6x^{2}+7x+60 ar x+4, lai iegūtu 2x^{2}-2x+15. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 2, b ar -2 un c ar 15.
x=\frac{2±\sqrt{-116}}{4}
Veiciet aprēķinus.
x\in \emptyset
Tā kā reālajā laukā negatīva skaitļa kvadrātsakne nav definēta, risinājuma nav.
x=-4
Visu atrasto risinājumu saraksts.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}