Sadalīt reizinātājos
-\left(t-\frac{1-\sqrt{5}}{2}\right)\left(t-\frac{\sqrt{5}+1}{2}\right)
Izrēķināt
1+t-t^{2}
Viktorīna
Polynomial
1 - t ^ { 2 } + t
Koplietot
Kopēts starpliktuvē
-t^{2}+t+1=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
t=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
t=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Kāpiniet 1 kvadrātā.
t=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Reiziniet -4 reiz -1.
t=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Pieskaitiet 1 pie 4.
t=\frac{-1±\sqrt{5}}{-2}
Reiziniet 2 reiz -1.
t=\frac{\sqrt{5}-1}{-2}
Tagad atrisiniet vienādojumu t=\frac{-1±\sqrt{5}}{-2}, ja ± ir pluss. Pieskaitiet -1 pie \sqrt{5}.
t=\frac{1-\sqrt{5}}{2}
Daliet -1+\sqrt{5} ar -2.
t=\frac{-\sqrt{5}-1}{-2}
Tagad atrisiniet vienādojumu t=\frac{-1±\sqrt{5}}{-2}, ja ± ir mīnuss. Atņemiet \sqrt{5} no -1.
t=\frac{\sqrt{5}+1}{2}
Daliet -1-\sqrt{5} ar -2.
-t^{2}+t+1=-\left(t-\frac{1-\sqrt{5}}{2}\right)\left(t-\frac{\sqrt{5}+1}{2}\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet \frac{1-\sqrt{5}}{2} ar x_{1} un \frac{1+\sqrt{5}}{2} ar x_{2}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}