Atrast x
x=\frac{25000000000D^{2}}{667}
D\neq 0
Atrast D (complex solution)
D=-\frac{\sqrt{6670x}}{500000}
D=\frac{\sqrt{6670x}}{500000}\text{, }x\neq 0
Atrast D
D=\frac{\sqrt{6670x}}{500000}
D=-\frac{\sqrt{6670x}}{500000}\text{, }x>0
Graph
Koplietot
Kopēts starpliktuvē
\frac{1}{667}=\frac{x\times 10^{-11}\times 2\times 2}{D^{2}}
Daliet abas puses ar 667.
D^{2}=667x\times 10^{-11}\times 2\times 2
Reiziniet abas vienādojuma puses ar 667D^{2}, kas ir mazākais 667,D^{2} skaitlis, kas dalās bez atlikuma.
D^{2}=667x\times \frac{1}{100000000000}\times 2\times 2
Aprēķiniet 10 pakāpē -11 un iegūstiet \frac{1}{100000000000}.
D^{2}=\frac{667}{100000000000}x\times 2\times 2
Reiziniet 667 un \frac{1}{100000000000}, lai iegūtu \frac{667}{100000000000}.
D^{2}=\frac{667}{50000000000}x\times 2
Reiziniet \frac{667}{100000000000} un 2, lai iegūtu \frac{667}{50000000000}.
D^{2}=\frac{667}{25000000000}x
Reiziniet \frac{667}{50000000000} un 2, lai iegūtu \frac{667}{25000000000}.
\frac{667}{25000000000}x=D^{2}
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
\frac{\frac{667}{25000000000}x}{\frac{667}{25000000000}}=\frac{D^{2}}{\frac{667}{25000000000}}
Daliet abas vienādojuma puses ar \frac{667}{25000000000}, kas ir tas pats, kas reizināt abas puses ar apgriezto daļskaitli.
x=\frac{D^{2}}{\frac{667}{25000000000}}
Dalīšana ar \frac{667}{25000000000} atsauc reizināšanu ar \frac{667}{25000000000}.
x=\frac{25000000000D^{2}}{667}
Daliet D^{2} ar \frac{667}{25000000000}, reizinot D^{2} ar apgriezto daļskaitli \frac{667}{25000000000} .
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}