Atrast x
x=-3
x=1
Graph
Viktorīna
Polynomial
- x ^ { 2 } - 2 x + 3 = 0
Koplietot
Kopēts starpliktuvē
a+b=-2 ab=-3=-3
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā -x^{2}+ax+bx+3. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=1 b=-3
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Pārrakstiet -x^{2}-2x+3 kā \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Sadaliet x pirmo un 3 otrajā grupā.
\left(-x+1\right)\left(x+3\right)
Iznesiet kopējo reizinātāju -x+1 pirms iekavām, izmantojot distributīvo īpašību.
x=1 x=-3
Lai atrastu vienādojumu risinājumus, atrisiniet -x+1=0 un x+3=0.
-x^{2}-2x+3=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar -1, b ar -2 un c ar 3.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kāpiniet -2 kvadrātā.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Reiziniet -4 reiz -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Reiziniet 4 reiz 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Pieskaitiet 4 pie 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Izvelciet kvadrātsakni no 16.
x=\frac{2±4}{2\left(-1\right)}
Skaitļa -2 pretstats ir 2.
x=\frac{2±4}{-2}
Reiziniet 2 reiz -1.
x=\frac{6}{-2}
Tagad atrisiniet vienādojumu x=\frac{2±4}{-2}, ja ± ir pluss. Pieskaitiet 2 pie 4.
x=-3
Daliet 6 ar -2.
x=-\frac{2}{-2}
Tagad atrisiniet vienādojumu x=\frac{2±4}{-2}, ja ± ir mīnuss. Atņemiet 4 no 2.
x=1
Daliet -2 ar -2.
x=-3 x=1
Vienādojums tagad ir atrisināts.
-x^{2}-2x+3=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
-x^{2}-2x+3-3=-3
Atņemiet 3 no vienādojuma abām pusēm.
-x^{2}-2x=-3
Atņemot 3 no sevis, paliek 0.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Daliet abas puses ar -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Dalīšana ar -1 atsauc reizināšanu ar -1.
x^{2}+2x=-\frac{3}{-1}
Daliet -2 ar -1.
x^{2}+2x=3
Daliet -3 ar -1.
x^{2}+2x+1^{2}=3+1^{2}
Daliet locekļa x koeficientu 2 ar 2, lai iegūtu 1. Pēc tam abām vienādojuma pusēm pieskaitiet 1 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}+2x+1=3+1
Kāpiniet 1 kvadrātā.
x^{2}+2x+1=4
Pieskaitiet 3 pie 1.
\left(x+1\right)^{2}=4
Sadaliet reizinātājos x^{2}+2x+1. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+1=2 x+1=-2
Vienkāršojiet.
x=1 x=-3
Atņemiet 1 no vienādojuma abām pusēm.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}