Izrēķināt
5
Sadalīt reizinātājos
5
Koplietot
Kopēts starpliktuvē
-\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(\sqrt{2}-1\right)^{2}.
-\frac{2-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{2} kvadrāts ir 2.
-\frac{3-2\sqrt{2}}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Saskaitiet 2 un 1, lai iegūtu 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{3-2\sqrt{2}}{4\sqrt{2}}, reizinot skaitītāju un saucēju ar \sqrt{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\times 2}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{2} kvadrāts ir 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Reiziniet 4 un 2, lai iegūtu 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(\sqrt{5}+\sqrt{3}\right)^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{5} kvadrāts ir 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Lai reiziniet \sqrt{5} un \sqrt{3}, reiziniet numurus zem kvadrātveida saknes.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+3}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{3} kvadrāts ir 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{8+2\sqrt{15}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Saskaitiet 5 un 3, lai iegūtu 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{8+2\sqrt{15}}{\sqrt{15}}, reizinot skaitītāju un saucēju ar \sqrt{15}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{15} kvadrāts ir 15.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(\sqrt{2}+1\right)^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{2+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{2} kvadrāts ir 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{3+2\sqrt{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Saskaitiet 2 un 1, lai iegūtu 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{3+2\sqrt{2}}{4\sqrt{2}}, reizinot skaitītāju un saucēju ar \sqrt{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\times 2}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{2} kvadrāts ir 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Reiziniet 4 un 2, lai iegūtu 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(\sqrt{5}-\sqrt{3}\right)^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Skaitļa \sqrt{5} kvadrāts ir 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Lai reiziniet \sqrt{5} un \sqrt{3}, reiziniet numurus zem kvadrātveida saknes.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+3}{\sqrt{15}}
Skaitļa \sqrt{3} kvadrāts ir 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{8-2\sqrt{15}}{\sqrt{15}}
Saskaitiet 5 un 3, lai iegūtu 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{8-2\sqrt{15}}{\sqrt{15}}, reizinot skaitītāju un saucēju ar \sqrt{15}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Skaitļa \sqrt{15} kvadrāts ir 15.
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120}+\frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. 8 un 15 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 120. Reiziniet -\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8} reiz \frac{15}{15}. Reiziniet \frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15} reiz \frac{8}{8}.
\frac{-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tā kā -\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120} un \frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{-45\sqrt{2}+60+64\sqrt{15}+240}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Veiciet reizināšanas darbības izteiksmē -15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Veiciet aprēķinus izteiksmē -45\sqrt{2}+60+64\sqrt{15}+240.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. 120 un 8 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 120. Reiziniet \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8} reiz \frac{15}{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tā kā \frac{-45\sqrt{2}+300+64\sqrt{15}}{120} un \frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Veiciet reizināšanas darbības izteiksmē -45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}.
\frac{360+64\sqrt{15}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Veiciet aprēķinus izteiksmē -45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60.
\frac{360+64\sqrt{15}}{120}-\frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. 120 un 15 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 120. Reiziniet \frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15} reiz \frac{8}{8}.
\frac{360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Tā kā \frac{360+64\sqrt{15}}{120} un \frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{360+64\sqrt{15}-64\sqrt{15}+240}{120}
Veiciet reizināšanas darbības izteiksmē 360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}.
\frac{600}{120}
Veiciet aprēķinus izteiksmē 360+64\sqrt{15}-64\sqrt{15}+240.
5
Daliet 600 ar 120, lai iegūtu 5.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}