Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

x^{2}-8x+16=0
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(x-4\right)^{2}.
a+b=-8 ab=16
Lai atrisinātu vienādojumu, x^{2}-8x+16, izmantojot formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-16 -2,-8 -4,-4
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 16.
-1-16=-17 -2-8=-10 -4-4=-8
Aprēķināt katra pāra summu.
a=-4 b=-4
Risinājums ir pāris, kas dod summu -8.
\left(x-4\right)\left(x-4\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(x+a\right)\left(x+b\right), izmantojot iegūtās vērtības.
\left(x-4\right)^{2}
Pārveidojiet par binoma kvadrātu.
x=4
Lai atrisinātu vienādojumu, atrisiniet x-4=0.
x^{2}-8x+16=0
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā x^{2}+ax+bx+16. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-16 -2,-8 -4,-4
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 16.
-1-16=-17 -2-8=-10 -4-4=-8
Aprēķināt katra pāra summu.
a=-4 b=-4
Risinājums ir pāris, kas dod summu -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Pārrakstiet x^{2}-8x+16 kā \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Sadaliet x pirmo un -4 otrajā grupā.
\left(x-4\right)\left(x-4\right)
Iznesiet kopējo reizinātāju x-4 pirms iekavām, izmantojot distributīvo īpašību.
\left(x-4\right)^{2}
Pārveidojiet par binoma kvadrātu.
x=4
Lai atrisinātu vienādojumu, atrisiniet x-4=0.
x^{2}-8x+16=0
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar -8 un c ar 16.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Kāpiniet -8 kvadrātā.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Reiziniet -4 reiz 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Pieskaitiet 64 pie -64.
x=-\frac{-8}{2}
Izvelciet kvadrātsakni no 0.
x=\frac{8}{2}
Skaitļa -8 pretstats ir 8.
x=4
Daliet 8 ar 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x-4=0 x-4=0
Vienkāršojiet.
x=4 x=4
Pieskaitiet 4 abās vienādojuma pusēs.
x=4
Vienādojums tagad ir atrisināts. Risinājumi ir tie paši.