Diferencēt pēc x
\frac{1}{2\sqrt{x-3}}
Izrēķināt
\sqrt{x-3}
Graph
Viktorīna
Algebra
( x - 3 ) ^ { 1 / 2 }
Koplietot
Kopēts starpliktuvē
\frac{1}{2}\left(x^{1}-3\right)^{\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)
Ja F ir divu funkciju f\left(u\right) un u=g\left(x\right) salikta funkcija, t.i., ja F\left(x\right)=f\left(g\left(x\right)\right), tad funkcijas F atvasinājums ir f atvasinājums pēc u, reizināts ar g atvasinājumu pēc x, t.i., \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{2}\left(x^{1}-3\right)^{-\frac{1}{2}}x^{1-1}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{1}{2}x^{0}\left(x^{1}-3\right)^{-\frac{1}{2}}
Vienkāršojiet.
\frac{1}{2}x^{0}\left(x-3\right)^{-\frac{1}{2}}
Jebkuram loceklim t t^{1}=t.
\frac{1}{2}\times 1\left(x-3\right)^{-\frac{1}{2}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.
\frac{1}{2}\left(x-3\right)^{-\frac{1}{2}}
Jebkuram loceklim t t\times 1=t un 1t=t.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}