Atrast x
x=-5
Graph
Koplietot
Kopēts starpliktuvē
x^{2}+10x+25=0
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(x+5\right)^{2}.
a+b=10 ab=25
Lai atrisinātu vienādojumu, x^{2}+10x+25, izmantojot formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,25 5,5
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 25.
1+25=26 5+5=10
Aprēķināt katra pāra summu.
a=5 b=5
Risinājums ir pāris, kas dod summu 10.
\left(x+5\right)\left(x+5\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(x+a\right)\left(x+b\right), izmantojot iegūtās vērtības.
\left(x+5\right)^{2}
Pārveidojiet par binoma kvadrātu.
x=-5
Lai atrisinātu vienādojumu, atrisiniet x+5=0.
x^{2}+10x+25=0
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(x+5\right)^{2}.
a+b=10 ab=1\times 25=25
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā x^{2}+ax+bx+25. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,25 5,5
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 25.
1+25=26 5+5=10
Aprēķināt katra pāra summu.
a=5 b=5
Risinājums ir pāris, kas dod summu 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Pārrakstiet x^{2}+10x+25 kā \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Sadaliet x pirmo un 5 otrajā grupā.
\left(x+5\right)\left(x+5\right)
Iznesiet kopējo reizinātāju x+5 pirms iekavām, izmantojot distributīvo īpašību.
\left(x+5\right)^{2}
Pārveidojiet par binoma kvadrātu.
x=-5
Lai atrisinātu vienādojumu, atrisiniet x+5=0.
x^{2}+10x+25=0
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(x+5\right)^{2}.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar 10 un c ar 25.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Kāpiniet 10 kvadrātā.
x=\frac{-10±\sqrt{100-100}}{2}
Reiziniet -4 reiz 25.
x=\frac{-10±\sqrt{0}}{2}
Pieskaitiet 100 pie -100.
x=-\frac{10}{2}
Izvelciet kvadrātsakni no 0.
x=-5
Daliet -10 ar 2.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+5=0 x+5=0
Vienkāršojiet.
x=-5 x=-5
Atņemiet 5 no vienādojuma abām pusēm.
x=-5
Vienādojums tagad ir atrisināts. Risinājumi ir tie paši.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}