Izrēķināt
\left(x+1\right)\left(x+\left(-3-2i\right)\right)\left(x+\left(-3+2i\right)\right)
Paplašināt
x^{3}-5x^{2}+7x+13
Koplietot
Kopēts starpliktuvē
\left(x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x+1 ar x-\left(3-2i\right).
x\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right) ar x-\left(3+2i\right).
x\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3-2i, lai iegūtu -3+2i.
x\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3+2i, lai iegūtu -3-2i.
\left(x^{2}+\left(-3+2i\right)x\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x ar x+\left(-3+2i\right).
x^{3}+\left(-3-2i\right)x^{2}+\left(-3+2i\right)x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, katru x^{2}+\left(-3+2i\right)x locekli reizinot ar katru x+\left(-3-2i\right) locekli.
x^{3}-6x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Savelciet \left(-3-2i\right)x^{2} un \left(-3+2i\right)x^{2}, lai iegūtu -6x^{2}.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3-2i, lai iegūtu -3+2i.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)
Reiziniet -1 un 3+2i, lai iegūtu -3-2i.
x^{3}-6x^{2}+13x+x^{2}+\left(-3-2i\right)x+\left(-3+2i\right)x+13
Izmantojiet distributīvo īpašību, katru x+\left(-3+2i\right) locekli reizinot ar katru x+\left(-3-2i\right) locekli.
x^{3}-6x^{2}+13x+x^{2}-6x+13
Savelciet \left(-3-2i\right)x un \left(-3+2i\right)x, lai iegūtu -6x.
x^{3}-5x^{2}+13x-6x+13
Savelciet -6x^{2} un x^{2}, lai iegūtu -5x^{2}.
x^{3}-5x^{2}+7x+13
Savelciet 13x un -6x, lai iegūtu 7x.
\left(x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x+1 ar x-\left(3-2i\right).
x\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right) ar x-\left(3+2i\right).
x\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3-2i, lai iegūtu -3+2i.
x\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3+2i, lai iegūtu -3-2i.
\left(x^{2}+\left(-3+2i\right)x\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, lai reizinātu x ar x+\left(-3+2i\right).
x^{3}+\left(-3-2i\right)x^{2}+\left(-3+2i\right)x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Izmantojiet distributīvo īpašību, katru x^{2}+\left(-3+2i\right)x locekli reizinot ar katru x+\left(-3-2i\right) locekli.
x^{3}-6x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
Savelciet \left(-3-2i\right)x^{2} un \left(-3+2i\right)x^{2}, lai iegūtu -6x^{2}.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)
Reiziniet -1 un 3-2i, lai iegūtu -3+2i.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)
Reiziniet -1 un 3+2i, lai iegūtu -3-2i.
x^{3}-6x^{2}+13x+x^{2}+\left(-3-2i\right)x+\left(-3+2i\right)x+13
Izmantojiet distributīvo īpašību, katru x+\left(-3+2i\right) locekli reizinot ar katru x+\left(-3-2i\right) locekli.
x^{3}-6x^{2}+13x+x^{2}-6x+13
Savelciet \left(-3-2i\right)x un \left(-3+2i\right)x, lai iegūtu -6x.
x^{3}-5x^{2}+13x-6x+13
Savelciet -6x^{2} un x^{2}, lai iegūtu -5x^{2}.
x^{3}-5x^{2}+7x+13
Savelciet 13x un -6x, lai iegūtu 7x.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}