Pāriet uz galveno saturu
Diferencēt pēc m
Tick mark Image
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{\mathrm{d}}{\mathrm{d}m}(\left(m+7\right)^{-\frac{5}{6}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet -\frac{1}{6} un -\frac{2}{3}, lai iegūtu -\frac{5}{6}.
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{5}{6}-1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)
Ja F ir divu funkciju f\left(u\right) un u=g\left(x\right) salikta funkcija, t.i., ja F\left(x\right)=f\left(g\left(x\right)\right), tad funkcijas F atvasinājums ir f atvasinājums pēc u, reizināts ar g atvasinājumu pēc x, t.i., \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{11}{6}}m^{1-1}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
-\frac{5}{6}m^{0}\left(m^{1}+7\right)^{-\frac{11}{6}}
Vienkāršojiet.
-\frac{5}{6}m^{0}\left(m+7\right)^{-\frac{11}{6}}
Jebkuram loceklim t t^{1}=t.
-\frac{5}{6}\left(m+7\right)^{-\frac{11}{6}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.