Izrēķināt
0
Sadalīt reizinātājos
0
Koplietot
Kopēts starpliktuvē
\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a+2b\right)^{3}-\left(a^{3}-8b^{3}\right)\left(a^{3}+8b^{3}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Lietojiet Ņūtona binomu \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}, lai izvērstu \left(a-2b\right)^{3}.
\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{3}+6a^{2}b+12ab^{2}+8b^{3}\right)-\left(a^{3}-8b^{3}\right)\left(a^{3}+8b^{3}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Lietojiet Ņūtona binomu \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3}, lai izvērstu \left(a+2b\right)^{3}.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(a^{3}-8b^{3}\right)\left(a^{3}+8b^{3}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Izmantojiet distributīvo īpašību, lai reizinātu a^{3}-6a^{2}b+12ab^{2}-8b^{3} ar a^{3}+6a^{2}b+12ab^{2}+8b^{3} un apvienotu līdzīgos locekļus.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(\left(a^{3}\right)^{2}-\left(8b^{3}\right)^{2}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Apsveriet \left(a^{3}-8b^{3}\right)\left(a^{3}+8b^{3}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(a^{6}-\left(8b^{3}\right)^{2}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 2, lai iegūtu 6.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(a^{6}-8^{2}\left(b^{3}\right)^{2}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Paplašiniet \left(8b^{3}\right)^{2}.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(a^{6}-8^{2}b^{6}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 2, lai iegūtu 6.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-\left(a^{6}-64b^{6}\right)-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Aprēķiniet 8 pakāpē 2 un iegūstiet 64.
a^{6}-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}-a^{6}+64b^{6}-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Lai atrastu a^{6}-64b^{6} pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
-12b^{2}a^{4}+48a^{2}b^{4}-64b^{6}+64b^{6}-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Savelciet a^{6} un -a^{6}, lai iegūtu 0.
-12b^{2}a^{4}+48a^{2}b^{4}-12a^{2}b^{2}\left(2b+a\right)\left(-a+2b\right)
Savelciet -64b^{6} un 64b^{6}, lai iegūtu 0.
-12b^{2}a^{4}+48a^{2}b^{4}+\left(-24a^{2}b^{3}-12b^{2}a^{3}\right)\left(-a+2b\right)
Izmantojiet distributīvo īpašību, lai reizinātu -12a^{2}b^{2} ar 2b+a.
-12b^{2}a^{4}+48a^{2}b^{4}-48a^{2}b^{4}+12b^{2}a^{4}
Izmantojiet distributīvo īpašību, lai reizinātu -24a^{2}b^{3}-12b^{2}a^{3} ar -a+2b un apvienotu līdzīgos locekļus.
-12b^{2}a^{4}+12b^{2}a^{4}
Savelciet 48a^{2}b^{4} un -48a^{2}b^{4}, lai iegūtu 0.
0
Savelciet -12b^{2}a^{4} un 12b^{2}a^{4}, lai iegūtu 0.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}