Sadalīt reizinātājos
\left(2x-1\right)\left(18x+5\right)
Izrēķināt
\left(2x-1\right)\left(18x+5\right)
Graph
Koplietot
Kopēts starpliktuvē
36x^{2}-8x-5
Reiziniet un savelciet līdzīgos locekļus.
a+b=-8 ab=36\left(-5\right)=-180
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā 36x^{2}+ax+bx-5. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Aprēķināt katra pāra summu.
a=-18 b=10
Risinājums ir pāris, kas dod summu -8.
\left(36x^{2}-18x\right)+\left(10x-5\right)
Pārrakstiet 36x^{2}-8x-5 kā \left(36x^{2}-18x\right)+\left(10x-5\right).
18x\left(2x-1\right)+5\left(2x-1\right)
Sadaliet 18x pirmo un 5 otrajā grupā.
\left(2x-1\right)\left(18x+5\right)
Iznesiet kopējo reizinātāju 2x-1 pirms iekavām, izmantojot distributīvo īpašību.
36x^{2}-8x-5
Reiziniet 9 un 4, lai iegūtu 36.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}