Atrast m (complex solution)
\left\{\begin{matrix}m=-\frac{\sqrt{\frac{2\left(-\sqrt{n^{8}-256n^{6}+128n^{4}+4096}+n^{4}+64\right)}{n^{2}}}}{2}\text{; }m=\frac{\sqrt{\frac{2\left(-\sqrt{n^{8}-256n^{6}+128n^{4}+4096}+n^{4}+64\right)}{n^{2}}}}{2}\text{; }m=\frac{\sqrt{2\left(\sqrt{\left(n^{4}+64\right)^{2}-256n^{6}}+n^{4}+64\right)}}{2n}\text{; }m=-\frac{\sqrt{2\left(\sqrt{\left(n^{4}+64\right)^{2}-256n^{6}}+n^{4}+64\right)}}{2n}\text{, }&n\neq 0\\m=0\text{, }&n=0\end{matrix}\right,
Atrast n (complex solution)
\left\{\begin{matrix}n=-\frac{\left(64-m^{2}\right)^{-\frac{1}{2}}\sqrt{-2\sqrt{m^{8}-256m^{4}+16384m^{2}}-2m^{4}}}{2}\text{; }n=\frac{\left(64-m^{2}\right)^{-\frac{1}{2}}\sqrt{-2\sqrt{m^{8}-256m^{4}+16384m^{2}}-2m^{4}}}{2}\text{; }n=\frac{\left(64-m^{2}\right)^{-\frac{1}{2}}\sqrt{2\sqrt{m^{8}-256m^{4}+16384m^{2}}-2m^{4}}}{2}\text{; }n=-\frac{\left(64-m^{2}\right)^{-\frac{1}{2}}\sqrt{2\sqrt{m^{8}-256m^{4}+16384m^{2}}-2m^{4}}}{2}\text{, }&m\neq 8\text{ and }m\neq -8\\n=-8\left(m^{4}\right)^{-\frac{1}{2}}m\text{; }n=8\left(m^{4}\right)^{-\frac{1}{2}}m\text{, }&m=8\text{ or }m=-8\end{matrix}\right,
Atrast m
\left\{\begin{matrix}m=\frac{\sqrt{2\left(-\sqrt{n^{8}-256n^{6}+128n^{4}+4096}+n^{4}+64\right)}}{2|n|}\text{; }m=-\frac{\sqrt{2\left(-\sqrt{n^{8}-256n^{6}+128n^{4}+4096}+n^{4}+64\right)}}{2|n|}\text{, }&\frac{-2\sqrt{n^{8}-256n^{6}+128n^{4}+4096}+128}{n^{2}}+2n^{2}\geq 0\text{ and }\left(n^{4}+64\right)^{2}-256n^{6}\geq 0\text{ and }n\neq 0\\m=\frac{\sqrt{2\left(\sqrt{\left(n^{4}+64\right)^{2}-256n^{6}}+n^{4}+64\right)}}{2|n|}\text{; }m=-\frac{\sqrt{2\left(\sqrt{\left(n^{4}+64\right)^{2}-256n^{6}}+n^{4}+64\right)}}{2|n|}\text{, }&\left(n^{4}+64\right)^{2}-256n^{6}\geq 0\text{ and }n\neq 0\\m=0\text{, }&n=0\end{matrix}\right,
Atrast n
\left\{\begin{matrix}n=\frac{\sqrt{-\frac{2m\left(\sqrt{m^{6}-256m^{2}+16384}+m^{3}\right)}{64-m^{2}}}}{2}\text{; }n=-\frac{\sqrt{-\frac{2m\left(\sqrt{m^{6}-256m^{2}+16384}+m^{3}\right)}{64-m^{2}}}}{2}\text{, }&m^{2}\left(m^{4}-256\right)\geq -16384\text{ and }\frac{m\left(\sqrt{m^{6}-256m^{2}+16384}+m^{3}\right)}{64-m^{2}}\leq 0\text{ and }m^{6}-256m^{2}+16384\geq 0\text{ and }|m|\neq 8\\n=\frac{\sqrt{\frac{2m\left(\sqrt{m^{6}-256m^{2}+16384}-m^{3}\right)}{64-m^{2}}}}{2}\text{; }n=-\frac{\sqrt{\frac{2m\left(\sqrt{m^{6}-256m^{2}+16384}-m^{3}\right)}{64-m^{2}}}}{2}\text{, }&m^{2}\left(m^{4}-256\right)\geq -16384\text{ and }\frac{m\left(\sqrt{m^{6}-256m^{2}+16384}-m^{3}\right)}{64-m^{2}}\geq 0\text{ and }m^{6}-256m^{2}+16384\geq 0\text{ and }|m|\neq 8\\n=\frac{8}{m}\text{; }n=-\frac{8}{m}\text{, }&|m|=8\end{matrix}\right,
Koplietot
Kopēts starpliktuvē
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}