Izrēķināt
4x^{3}
Diferencēt pēc x
12x^{2}
Graph
Koplietot
Kopēts starpliktuvē
\sqrt[3]{64x^{9}}
Lai vienkāršotu izteiksmi, izmantojiet kāpināšanas likumus.
\sqrt[3]{64}\sqrt[3]{x^{9}}
Lai kāpinātu divu vai vairāk skaitļu reizinājumu, kāpiniet katru reizinātāju un sareiziniet iegūtos rezultātus.
4\sqrt[3]{x^{9}}
Kāpiniet 64 \frac{1}{3}. pakāpē.
4x^{9\times \frac{1}{3}}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus.
4x^{3}
Reiziniet 9 reiz \frac{1}{3}.
\frac{1}{3}\times \left(64x^{9}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(64x^{9})
Ja F ir divu funkciju f\left(u\right) un u=g\left(x\right) salikta funkcija, t.i., ja F\left(x\right)=f\left(g\left(x\right)\right), tad funkcijas F atvasinājums ir f atvasinājums pēc u, reizināts ar g atvasinājumu pēc x, t.i., \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{3}\times \left(64x^{9}\right)^{-\frac{2}{3}}\times 9\times 64x^{9-1}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
192x^{8}\times \left(64x^{9}\right)^{-\frac{2}{3}}
Vienkāršojiet.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}