( 41 - 2 j - 5 k ) = ( 4 j - 2 j - 5 k ) \cdot ( 4 j - 2 j
Atrast k
k=-\frac{41-2j-4j^{2}}{5\left(2j-1\right)}
j\neq \frac{1}{2}
Atrast j
j=\frac{-\sqrt{25k^{2}-30k+165}+5k-1}{4}
j=\frac{\sqrt{25k^{2}-30k+165}+5k-1}{4}
Koplietot
Kopēts starpliktuvē
41-2j-5k=\left(2j-5k\right)\left(4j-2j\right)
Savelciet 4j un -2j, lai iegūtu 2j.
41-2j-5k=\left(2j-5k\right)\times 2j
Savelciet 4j un -2j, lai iegūtu 2j.
41-2j-5k=\left(4j-10k\right)j
Izmantojiet distributīvo īpašību, lai reizinātu 2j-5k ar 2.
41-2j-5k=4j^{2}-10kj
Izmantojiet distributīvo īpašību, lai reizinātu 4j-10k ar j.
41-2j-5k+10kj=4j^{2}
Pievienot 10kj abās pusēs.
-2j-5k+10kj=4j^{2}-41
Atņemiet 41 no abām pusēm.
-5k+10kj=4j^{2}-41+2j
Pievienot 2j abās pusēs.
\left(-5+10j\right)k=4j^{2}-41+2j
Savelciet visus locekļus, kuros ir k.
\left(10j-5\right)k=4j^{2}+2j-41
Vienādojums ir standarta formā.
\frac{\left(10j-5\right)k}{10j-5}=\frac{4j^{2}+2j-41}{10j-5}
Daliet abas puses ar -5+10j.
k=\frac{4j^{2}+2j-41}{10j-5}
Dalīšana ar -5+10j atsauc reizināšanu ar -5+10j.
k=\frac{4j^{2}+2j-41}{5\left(2j-1\right)}
Daliet 4j^{2}-41+2j ar -5+10j.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}