Izrēķināt
8\left(a^{4}-b^{4}\right)
Paplašināt
8a^{4}-8b^{4}
Koplietot
Kopēts starpliktuvē
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Lietojiet Ņūtona binomu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, lai izvērstu \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Lietojiet Ņūtona binomu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, lai izvērstu \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Lai atrastu a^{4}-6a^{2}b^{2}+9b^{4} pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Savelciet 9a^{4} un -a^{4}, lai iegūtu 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Savelciet -6a^{2}b^{2} un 6a^{2}b^{2}, lai iegūtu 0.
8a^{4}-8b^{4}
Savelciet b^{4} un -9b^{4}, lai iegūtu -8b^{4}.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Lietojiet Ņūtona binomu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, lai izvērstu \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Lietojiet Ņūtona binomu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, lai izvērstu \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 2, lai iegūtu 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Lai atrastu a^{4}-6a^{2}b^{2}+9b^{4} pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Savelciet 9a^{4} un -a^{4}, lai iegūtu 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Savelciet -6a^{2}b^{2} un 6a^{2}b^{2}, lai iegūtu 0.
8a^{4}-8b^{4}
Savelciet b^{4} un -9b^{4}, lai iegūtu -8b^{4}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}