Izrēķināt
-\frac{25xy}{6}+x^{2}
Paplašināt
-\frac{25xy}{6}+x^{2}
Koplietot
Kopēts starpliktuvē
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Izmantojiet distributīvo īpašību, katru 2x+\frac{1}{3}y locekli reizinot ar katru x-3y locekli.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Reiziniet y un y, lai iegūtu y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Savelciet -6xy un \frac{1}{3}yx, lai iegūtu -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Reiziniet \frac{1}{3} un -3, lai iegūtu \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Daliet -3 ar 3, lai iegūtu -1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Izmantojiet distributīvo īpašību, katru 2x+y locekli reizinot ar katru \frac{1}{2}x-y locekli.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Reiziniet x un x, lai iegūtu x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Saīsiniet 2 un 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Savelciet -2xy un y\times \frac{1}{2}x, lai iegūtu -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Lai atrastu x^{2}-\frac{3}{2}xy-y^{2} pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
Skaitļa -\frac{3}{2}xy pretstats ir \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
Skaitļa -y^{2} pretstats ir y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Savelciet 2x^{2} un -x^{2}, lai iegūtu x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Savelciet -\frac{17}{3}xy un \frac{3}{2}xy, lai iegūtu -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Savelciet -y^{2} un y^{2}, lai iegūtu 0.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Izmantojiet distributīvo īpašību, katru 2x+\frac{1}{3}y locekli reizinot ar katru x-3y locekli.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Reiziniet y un y, lai iegūtu y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Savelciet -6xy un \frac{1}{3}yx, lai iegūtu -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Reiziniet \frac{1}{3} un -3, lai iegūtu \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Daliet -3 ar 3, lai iegūtu -1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Izmantojiet distributīvo īpašību, katru 2x+y locekli reizinot ar katru \frac{1}{2}x-y locekli.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Reiziniet x un x, lai iegūtu x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Saīsiniet 2 un 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Savelciet -2xy un y\times \frac{1}{2}x, lai iegūtu -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Lai atrastu x^{2}-\frac{3}{2}xy-y^{2} pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
Skaitļa -\frac{3}{2}xy pretstats ir \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
Skaitļa -y^{2} pretstats ir y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Savelciet 2x^{2} un -x^{2}, lai iegūtu x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Savelciet -\frac{17}{3}xy un \frac{3}{2}xy, lai iegūtu -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Savelciet -y^{2} un y^{2}, lai iegūtu 0.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}