Izrēķināt
21-\sqrt{3}\approx 19,267949192
Koplietot
Kopēts starpliktuvē
2-\sqrt{3}+3-\left(3-7\sqrt{2}\right)^{0}-\left(-1\right)^{2018}+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Aprēķiniet \frac{1}{3} pakāpē -1 un iegūstiet 3.
5-\sqrt{3}-\left(3-7\sqrt{2}\right)^{0}-\left(-1\right)^{2018}+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Saskaitiet 2 un 3, lai iegūtu 5.
5-\sqrt{3}-1-\left(-1\right)^{2018}+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Aprēķiniet 3-7\sqrt{2} pakāpē 0 un iegūstiet 1.
4-\sqrt{3}-\left(-1\right)^{2018}+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Atņemiet 1 no 5, lai iegūtu 4.
4-\sqrt{3}-1+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Aprēķiniet -1 pakāpē 2018 un iegūstiet 1.
3-\sqrt{3}+\sqrt{4}+\left(\frac{1}{4}\right)^{-2}
Atņemiet 1 no 4, lai iegūtu 3.
3-\sqrt{3}+2+\left(\frac{1}{4}\right)^{-2}
Aprēķināt kvadrātsakni no 4 un iegūt 2.
5-\sqrt{3}+\left(\frac{1}{4}\right)^{-2}
Saskaitiet 3 un 2, lai iegūtu 5.
5-\sqrt{3}+16
Aprēķiniet \frac{1}{4} pakāpē -2 un iegūstiet 16.
21-\sqrt{3}
Saskaitiet 5 un 16, lai iegūtu 21.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}