Izrēķināt
8z^{5}y^{7}x^{9}
Paplašināt
8z^{5}y^{7}x^{9}
Viktorīna
Algebra
5 problēmas, kas līdzīgas:
( - x ^ { 3 } y ^ { 4 } z ^ { 2 } ) ( - 2 x ^ { 2 } y z ) ^ { 3 }
Koplietot
Kopēts starpliktuvē
\left(-x^{3}\right)y^{4}z^{2}\left(-2\right)^{3}\left(x^{2}\right)^{3}y^{3}z^{3}
Paplašiniet \left(-2x^{2}yz\right)^{3}.
\left(-x^{3}\right)y^{4}z^{2}\left(-2\right)^{3}x^{6}y^{3}z^{3}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\left(-x^{3}\right)y^{4}z^{2}\left(-8\right)x^{6}y^{3}z^{3}
Aprēķiniet -2 pakāpē 3 un iegūstiet -8.
\left(-x^{3}\right)y^{7}z^{2}\left(-8\right)x^{6}z^{3}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 4 un 3, lai iegūtu 7.
\left(-x^{3}\right)y^{7}z^{5}\left(-8\right)x^{6}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 3, lai iegūtu 5.
8x^{3}y^{7}z^{5}x^{6}
Reiziniet -1 un -8, lai iegūtu 8.
8x^{9}y^{7}z^{5}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 6, lai iegūtu 9.
\left(-x^{3}\right)y^{4}z^{2}\left(-2\right)^{3}\left(x^{2}\right)^{3}y^{3}z^{3}
Paplašiniet \left(-2x^{2}yz\right)^{3}.
\left(-x^{3}\right)y^{4}z^{2}\left(-2\right)^{3}x^{6}y^{3}z^{3}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\left(-x^{3}\right)y^{4}z^{2}\left(-8\right)x^{6}y^{3}z^{3}
Aprēķiniet -2 pakāpē 3 un iegūstiet -8.
\left(-x^{3}\right)y^{7}z^{2}\left(-8\right)x^{6}z^{3}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 4 un 3, lai iegūtu 7.
\left(-x^{3}\right)y^{7}z^{5}\left(-8\right)x^{6}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 3, lai iegūtu 5.
8x^{3}y^{7}z^{5}x^{6}
Reiziniet -1 un -8, lai iegūtu 8.
8x^{9}y^{7}z^{5}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 6, lai iegūtu 9.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}