Izrēķināt
n^{3}a^{9}
Paplašināt
n^{3}a^{9}
Koplietot
Kopēts starpliktuvē
\left(-n\right)^{3}\left(-a\right)^{9}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 6 un 3, lai iegūtu 9.
\left(-1\right)^{3}n^{3}\left(-a\right)^{9}
Paplašiniet \left(-n\right)^{3}.
-n^{3}\left(-a\right)^{9}
Aprēķiniet -1 pakāpē 3 un iegūstiet -1.
-n^{3}\left(-1\right)^{9}a^{9}
Paplašiniet \left(-a\right)^{9}.
-n^{3}\left(-1\right)a^{9}
Aprēķiniet -1 pakāpē 9 un iegūstiet -1.
n^{3}a^{9}
Reiziniet -1 un -1, lai iegūtu 1.
\left(-n\right)^{3}\left(-a\right)^{9}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 6 un 3, lai iegūtu 9.
\left(-1\right)^{3}n^{3}\left(-a\right)^{9}
Paplašiniet \left(-n\right)^{3}.
-n^{3}\left(-a\right)^{9}
Aprēķiniet -1 pakāpē 3 un iegūstiet -1.
-n^{3}\left(-1\right)^{9}a^{9}
Paplašiniet \left(-a\right)^{9}.
-n^{3}\left(-1\right)a^{9}
Aprēķiniet -1 pakāpē 9 un iegūstiet -1.
n^{3}a^{9}
Reiziniet -1 un -1, lai iegūtu 1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}