Atrast x
x=\sqrt{58}+7\approx 14,615773106
x=7-\sqrt{58}\approx -0,615773106
x=-1
x=-3
Graph
Viktorīna
Polynomial
5 problēmas, kas līdzīgas:
{ x }^{ 4 } -10 { x }^{ 3 } -62 { x }^{ 2 } -78x-27 = 0
Koplietot
Kopēts starpliktuvē
±27,±9,±3,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis -27 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=-1
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{3}-11x^{2}-51x-27=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{4}-10x^{3}-62x^{2}-78x-27 ar x+1, lai iegūtu x^{3}-11x^{2}-51x-27. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
±27,±9,±3,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis -27 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=-3
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{2}-14x-9=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{3}-11x^{2}-51x-27 ar x+3, lai iegūtu x^{2}-14x-9. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 1\left(-9\right)}}{2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 1, b ar -14 un c ar -9.
x=\frac{14±2\sqrt{58}}{2}
Veiciet aprēķinus.
x=7-\sqrt{58} x=\sqrt{58}+7
Atrisiniet vienādojumu x^{2}-14x-9=0, ja ± ir pluss un ± ir mīnuss.
x=-1 x=-3 x=7-\sqrt{58} x=\sqrt{58}+7
Visu atrasto risinājumu saraksts.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}