Pāriet uz galveno saturu
Sadalīt reizinātājos
Tick mark Image
Izrēķināt
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=-4 ab=1\times 3=3
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx+3. Lai atrastu a un b, iestatiet sistēmu, kas ir jāatrisina.
a=-3 b=-1
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x^{2}-3x\right)+\left(-x+3\right)
Pārrakstiet x^{2}-4x+3 kā \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Iznesiet pirms iekavām reizinātāju x pirmajā grupā, bet -1 otrajā grupā.
\left(x-3\right)\left(x-1\right)
Iznesiet pirms iekavām kopīgo locekli x-3, izmantojot distributīvo īpašību.
x^{2}-4x+3=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Kāpiniet -4 kvadrātā.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Reiziniet -4 reiz 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Pieskaitiet 16 pie -12.
x=\frac{-\left(-4\right)±2}{2}
Izvelciet kvadrātsakni no 4.
x=\frac{4±2}{2}
Skaitļa -4 pretstats ir 4.
x=\frac{6}{2}
Tagad atrisiniet vienādojumu x=\frac{4±2}{2}, ja ± ir pluss. Pieskaitiet 4 pie 2.
x=3
Daliet 6 ar 2.
x=\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{4±2}{2}, ja ± ir mīnuss. Atņemiet 2 no 4.
x=1
Daliet 2 ar 2.
x^{2}-4x+3=\left(x-3\right)\left(x-1\right)
Sadaliet reizinātājos sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizstājiet 3 šim: x_{1} un 1 šim: x_{2}.