Pāriet uz galveno saturu
Sadalīt reizinātājos
Tick mark Image
Izrēķināt
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=-3 ab=1\left(-4\right)=-4
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx-4. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,-4 2,-2
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -4.
1-4=-3 2-2=0
Aprēķināt katra pāra summu.
a=-4 b=1
Risinājums ir pāris, kas dod summu -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Pārrakstiet x^{2}-3x-4 kā \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Iznesiet reizinātāju x pirms iekavām izteiksmē x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Iznesiet kopējo reizinātāju x-4 pirms iekavām, izmantojot distributīvo īpašību.
x^{2}-3x-4=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Kāpiniet -3 kvadrātā.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Reiziniet -4 reiz -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Pieskaitiet 9 pie 16.
x=\frac{-\left(-3\right)±5}{2}
Izvelciet kvadrātsakni no 25.
x=\frac{3±5}{2}
Skaitļa -3 pretstats ir 3.
x=\frac{8}{2}
Tagad atrisiniet vienādojumu x=\frac{3±5}{2}, ja ± ir pluss. Pieskaitiet 3 pie 5.
x=4
Daliet 8 ar 2.
x=-\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{3±5}{2}, ja ± ir mīnuss. Atņemiet 5 no 3.
x=-1
Daliet -2 ar 2.
x^{2}-3x-4=\left(x-4\right)\left(x-\left(-1\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet 4 ar x_{1} un -1 ar x_{2}.
x^{2}-3x-4=\left(x-4\right)\left(x+1\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.