Atrast x
x=\frac{\left(a+1\right)^{2}}{4a}
a\neq 0
Atrast a (complex solution)
a=-2\sqrt{x\left(x-1\right)}+2x-1
a=2\sqrt{x\left(x-1\right)}+2x-1
Atrast a
a=-2\sqrt{x\left(x-1\right)}+2x-1
a=2\sqrt{x\left(x-1\right)}+2x-1\text{, }x\geq 1\text{ or }x\leq 0
Graph
Koplietot
Kopēts starpliktuvē
x^{2}+2xa+2x=\left(x-a\right)^{2}+2\left(x+a\right)+1
Izmantojiet distributīvo īpašību, lai reizinātu 2x ar a+1.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2\left(x+a\right)+1
Lietojiet Ņūtona binomu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, lai izvērstu \left(x-a\right)^{2}.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2x+2a+1
Izmantojiet distributīvo īpašību, lai reizinātu 2 ar x+a.
x^{2}+2xa+2x-x^{2}=-2xa+a^{2}+2x+2a+1
Atņemiet x^{2} no abām pusēm.
2xa+2x=-2xa+a^{2}+2x+2a+1
Savelciet x^{2} un -x^{2}, lai iegūtu 0.
2xa+2x+2xa=a^{2}+2x+2a+1
Pievienot 2xa abās pusēs.
4xa+2x=a^{2}+2x+2a+1
Savelciet 2xa un 2xa, lai iegūtu 4xa.
4xa+2x-2x=a^{2}+2a+1
Atņemiet 2x no abām pusēm.
4xa=a^{2}+2a+1
Savelciet 2x un -2x, lai iegūtu 0.
4ax=a^{2}+2a+1
Vienādojums ir standarta formā.
\frac{4ax}{4a}=\frac{\left(a+1\right)^{2}}{4a}
Daliet abas puses ar 4a.
x=\frac{\left(a+1\right)^{2}}{4a}
Dalīšana ar 4a atsauc reizināšanu ar 4a.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}