Atrast x (complex solution)
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\approx 1,169629851+0,931683417i
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\approx -1,169629851-0,931683417i
x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\approx 1,169629851-0,931683417i
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\approx -1,169629851+0,931683417i
Graph
Koplietot
Kopēts starpliktuvē
x^{2}x^{2}+5=x^{2}
Mainīgais x nevar būt vienāds ar 0, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar x^{2}.
x^{4}+5=x^{2}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 2, lai iegūtu 4.
x^{4}+5-x^{2}=0
Atņemiet x^{2} no abām pusēm.
t^{2}-t+5=0
Aizvietojiet t ar x^{2}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 5}}{2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 1, b ar -1 un c ar 5.
t=\frac{1±\sqrt{-19}}{2}
Veiciet aprēķinus.
t=\frac{1+\sqrt{19}i}{2} t=\frac{-\sqrt{19}i+1}{2}
Atrisiniet vienādojumu t=\frac{1±\sqrt{-19}}{2}, ja ± ir pluss un ± ir mīnuss.
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}
Tā kā x=t^{2}, risinājumi tiek iegūti, novērtējot x=±\sqrt{t} katram t.
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0
Mainīgais x nevar būt vienāds ar 0.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}