Izrēķināt
x^{\frac{4}{5}}\left(x+4\right)
Diferencēt pēc x
\frac{9x+16}{5\sqrt[5]{x}}
Graph
Koplietot
Kopēts starpliktuvē
x^{\frac{4}{5}}x+4x^{\frac{4}{5}}
Izmantojiet distributīvo īpašību, lai reizinātu x^{\frac{4}{5}} ar x+4.
x^{\frac{9}{5}}+4x^{\frac{4}{5}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet \frac{4}{5} un 1, lai iegūtu \frac{9}{5}.
x^{\frac{4}{5}}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+4)+\left(x^{1}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{4}{5}})
Jebkurām divām diferencējamām funkcijām divu funkciju reizinājuma atvasinājums ir pirmā funkcija reiz otrās atvasinājums plus otrā funkcija reiz pirmās funkcijas atvasinājums.
x^{\frac{4}{5}}x^{1-1}+\left(x^{1}+4\right)\times \frac{4}{5}x^{\frac{4}{5}-1}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
x^{\frac{4}{5}}x^{0}+\left(x^{1}+4\right)\times \frac{4}{5}x^{-\frac{1}{5}}
Vienkāršojiet.
x^{\frac{4}{5}}x^{0}+x^{1}\times \frac{4}{5}x^{-\frac{1}{5}}+4\times \frac{4}{5}x^{-\frac{1}{5}}
Reiziniet x^{1}+4 reiz \frac{4}{5}x^{-\frac{1}{5}}.
x^{\frac{4}{5}}+\frac{4}{5}x^{1-\frac{1}{5}}+4\times \frac{4}{5}x^{-\frac{1}{5}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
x^{\frac{4}{5}}+\frac{4}{5}x^{\frac{4}{5}}+\frac{16}{5}x^{-\frac{1}{5}}
Vienkāršojiet.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}