Pāriet uz galveno saturu
Atrast y
Tick mark Image
Atrast x
Tick mark Image

Koplietot

\left(\sqrt{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Izsakiet \frac{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}}}{z} kā vienu daļskaitli.
\left(\sqrt{\frac{\frac{\frac{yx}{545\times 2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Izsakiet \frac{\frac{yx}{545}}{2x} kā vienu daļskaitli.
\left(\sqrt{\frac{\frac{\frac{y}{2\times 545}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Saīsiniet x gan skaitītājā, gan saucējā.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Reiziniet 2 un 545, lai iegūtu 1090.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\left(\sqrt{51}\right)^{2}}}z}}\right)^{2}=50000
Atbrīvojieties no iracionalitātes saucēju ar \frac{x}{z\sqrt{51}}, reizinot skaitītāju un saucēju ar \sqrt{51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\times 51}}z}}\right)^{2}=50000
Skaitļa \sqrt{51} kvadrāts ir 51.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}z}}\right)^{2}=50000
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{x\sqrt{51}}{z\times 51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}}\right)^{2}=50000
Saīsiniet \sqrt{51} gan skaitītājā, gan saucējā.
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Aprēķiniet \sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}} pakāpē 2 un iegūstiet \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}.
\frac{\frac{y}{1090}}{455\times 5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Izsakiet \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} kā vienu daļskaitli.
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Reiziniet 455 un 5555, lai iegūtu 2527525.
\frac{y}{1090\times 2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Izsakiet \frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} kā vienu daļskaitli.
\frac{y}{2755002250\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Reiziniet 1090 un 2527525, lai iegūtu 2755002250.
\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y=50000
Vienādojums ir standarta formā.
\frac{\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
Daliet abas puses ar \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
Dalīšana ar \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} atsauc reizināšanu ar \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
Daliet 50000 ar \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.