Izrēķināt
\frac{5}{4}=1,25
Sadalīt reizinātājos
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1,25
Koplietot
Kopēts starpliktuvē
\frac{\left(\frac{1}{2}+\frac{3}{9}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Vienādot daļskaitli \frac{5}{10} līdz mazākajam loceklim, izvelkot un saīsinot 5.
\frac{\left(\frac{1}{2}+\frac{1}{3}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Vienādot daļskaitli \frac{3}{9} līdz mazākajam loceklim, izvelkot un saīsinot 3.
\frac{\left(\frac{5}{6}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Saskaitiet \frac{1}{2} un \frac{1}{3}, lai iegūtu \frac{5}{6}.
\frac{\frac{25}{36}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Aprēķiniet \frac{5}{6} pakāpē 2 un iegūstiet \frac{25}{36}.
\frac{\frac{25}{36}}{\left(\frac{5}{3}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Vienādot daļskaitli \frac{15}{9} līdz mazākajam loceklim, izvelkot un saīsinot 3.
\frac{\frac{25}{36}}{\frac{25}{9}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Aprēķiniet \frac{5}{3} pakāpē 2 un iegūstiet \frac{25}{9}.
\frac{25}{36}\times \frac{9}{25}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Daliet \frac{25}{36} ar \frac{25}{9}, reizinot \frac{25}{36} ar apgriezto daļskaitli \frac{25}{9} .
\frac{1}{4}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Reiziniet \frac{25}{36} un \frac{9}{25}, lai iegūtu \frac{1}{4}.
\frac{1}{4}+\lceil \left(\frac{7\times 90}{10\times 84}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Daliet \frac{7}{10} ar \frac{84}{90}, reizinot \frac{7}{10} ar apgriezto daļskaitli \frac{84}{90} .
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Saīsiniet 3\times 7\times 10 gan skaitītājā, gan saucējā.
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{24\times 9}{9\times 4}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Daliet \frac{24}{9} ar \frac{4}{9}, reizinot \frac{24}{9} ar apgriezto daļskaitli \frac{4}{9} .
\frac{1}{4}+\lceil \left(\frac{3}{4}+2\times 3\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Saīsiniet 3\times 3\times 4 gan skaitītājā, gan saucējā.
\frac{1}{4}+\lceil \left(\frac{3}{4}+6\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Reiziniet 2 un 3, lai iegūtu 6.
\frac{1}{4}+\lceil \frac{27}{4}\times \frac{2}{27}+\frac{5}{12}\rceil
Saskaitiet \frac{3}{4} un 6, lai iegūtu \frac{27}{4}.
\frac{1}{4}+\lceil \frac{1}{2}+\frac{5}{12}\rceil
Reiziniet \frac{27}{4} un \frac{2}{27}, lai iegūtu \frac{1}{2}.
\frac{1}{4}+\lceil \frac{11}{12}\rceil
Saskaitiet \frac{1}{2} un \frac{5}{12}, lai iegūtu \frac{11}{12}.
\frac{1}{4}+\lceil 0+\frac{11}{12}\rceil
Dalot 11 ar 12, tiek iegūts 0 un atlikums 11. Pārrakstiet \frac{11}{12} kā 0+\frac{11}{12}.
\frac{1}{4}+1
Reālā skaitļa a maksimums ir mazākais veselais skaitlis, kas ir lielāks par vai vienāds ar a. 0+\frac{11}{12} maksimums ir 1.
\frac{5}{4}
Saskaitiet \frac{1}{4} un 1, lai iegūtu \frac{5}{4}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}