Diferencēt pēc A
\frac{1}{\left(\cos(A)\right)^{2}}
Izrēķināt
\tan(A)
Koplietot
Kopēts starpliktuvē
\frac{\mathrm{d}}{\mathrm{d}A}(\frac{\sin(A)}{\cos(A)})
Izmantojiet tangensa definīciju.
\frac{\cos(A)\frac{\mathrm{d}}{\mathrm{d}A}(\sin(A))-\sin(A)\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A))}{\left(\cos(A)\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\cos(A)\cos(A)-\sin(A)\left(-\sin(A)\right)}{\left(\cos(A)\right)^{2}}
sin(A) atvasinājums ir cos(A), bet cos(A) atvasinājums ir −sin(A).
\frac{\left(\cos(A)\right)^{2}+\left(\sin(A)\right)^{2}}{\left(\cos(A)\right)^{2}}
Vienkāršojiet.
\frac{1}{\left(\cos(A)\right)^{2}}
Izmantojiet Pitagora identitātes.
\left(\sec(A)\right)^{2}
Izmantojiet sekansa definīciju.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}