Pāriet uz galveno saturu
Atrast x
Tick mark Image
Atrast y
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{37} ar 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Izmantojiet distributīvo īpašību, lai reizinātu -\sqrt{149} ar 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Reiziniet -1 un -1, lai iegūtu 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Reiziniet -23 un -1, lai iegūtu 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}
Atņemiet 6\left(-\sqrt{149}\right)x no abām pusēm.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-1\right)\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Reiziniet -1 un 6, lai iegūtu -6.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Reiziniet -6 un -1, lai iegūtu 6.
10\sqrt{37}x+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y
Atņemiet 7\sqrt{37}y no abām pusēm.
10\sqrt{37}x+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Atņemiet 5\sqrt{37} no abām pusēm.
\left(10\sqrt{37}+6\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Savelciet visus locekļus, kuros ir x.
\left(6\sqrt{149}+10\sqrt{37}\right)x=\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}
Vienādojums ir standarta formā.
\frac{\left(6\sqrt{149}+10\sqrt{37}\right)x}{6\sqrt{149}+10\sqrt{37}}=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Daliet abas puses ar 10\sqrt{37}+6\sqrt{149}.
x=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Dalīšana ar 10\sqrt{37}+6\sqrt{149} atsauc reizināšanu ar 10\sqrt{37}+6\sqrt{149}.
x=\frac{\frac{3\sqrt{149}-5\sqrt{37}}{416}\left(\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}\right)}{2}
Daliet \sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} ar 10\sqrt{37}+6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{37} ar 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Izmantojiet distributīvo īpašību, lai reizinātu -\sqrt{149} ar 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Reiziniet -1 un -1, lai iegūtu 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Reiziniet -23 un -1, lai iegūtu 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=6\left(-\sqrt{149}\right)x+23\sqrt{149}
Atņemiet \sqrt{149}y no abām pusēm.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}
Reiziniet 6 un -1, lai iegūtu -6.
7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x
Atņemiet 10\sqrt{37}x no abām pusēm.
7\sqrt{37}y-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Atņemiet 5\sqrt{37} no abām pusēm.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Savelciet visus locekļus, kuros ir y.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}
Vienādojums ir standarta formā.
\frac{\left(7\sqrt{37}-\sqrt{149}\right)y}{7\sqrt{37}-\sqrt{149}}=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Daliet abas puses ar 7\sqrt{37}-\sqrt{149}.
y=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Dalīšana ar 7\sqrt{37}-\sqrt{149} atsauc reizināšanu ar 7\sqrt{37}-\sqrt{149}.
y=\frac{\sqrt{149}+7\sqrt{37}}{1664}\left(-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}\right)
Daliet -6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} ar 7\sqrt{37}-\sqrt{149}.