Pāriet uz galveno saturu
Atrast x
Tick mark Image
Atrast y
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{37} ar 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{149} ar 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}
Atņemiet 6\sqrt{149}x no abām pusēm.
10\sqrt{37}x+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y
Atņemiet 7\sqrt{37}y no abām pusēm.
10\sqrt{37}x-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Atņemiet 5\sqrt{37} no abām pusēm.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Savelciet visus locekļus, kuros ir x.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}
Vienādojums ir standarta formā.
\frac{\left(10\sqrt{37}-6\sqrt{149}\right)x}{10\sqrt{37}-6\sqrt{149}}=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
Daliet abas puses ar 10\sqrt{37}-6\sqrt{149}.
x=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
Dalīšana ar 10\sqrt{37}-6\sqrt{149} atsauc reizināšanu ar 10\sqrt{37}-6\sqrt{149}.
x=\frac{\frac{3\sqrt{149}+5\sqrt{37}}{416}\left(7\sqrt{37}y+\sqrt{149}y+5\sqrt{37}+23\sqrt{149}\right)}{2}
Daliet -\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} ar 10\sqrt{37}-6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{37} ar 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
Izmantojiet distributīvo īpašību, lai reizinātu \sqrt{149} ar 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}
Pievienot \sqrt{149}y abās pusēs.
7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x
Atņemiet 10\sqrt{37}x no abām pusēm.
7\sqrt{37}y+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Atņemiet 5\sqrt{37} no abām pusēm.
\left(7\sqrt{37}+\sqrt{149}\right)y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Savelciet visus locekļus, kuros ir y.
\left(\sqrt{149}+7\sqrt{37}\right)y=6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}
Vienādojums ir standarta formā.
\frac{\left(\sqrt{149}+7\sqrt{37}\right)y}{\sqrt{149}+7\sqrt{37}}=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
Daliet abas puses ar 7\sqrt{37}+\sqrt{149}.
y=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
Dalīšana ar 7\sqrt{37}+\sqrt{149} atsauc reizināšanu ar 7\sqrt{37}+\sqrt{149}.
y=\frac{\sqrt{5513}x-67x+41-3\sqrt{5513}}{32}
Daliet 6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} ar 7\sqrt{37}+\sqrt{149}.