Izrēķināt
\sqrt[3]{3}\approx 1,44224957
Viktorīna
Arithmetic
5 problēmas, kas līdzīgas:
\sqrt[ 9 ] { 27 } + \sqrt[ 15 ] { 243 } - \sqrt[ 6 ] { 9 }
Koplietot
Kopēts starpliktuvē
\sqrt[9]{27}=\sqrt[9]{3^{3}}=3^{\frac{3}{9}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Pārrakstiet \sqrt[9]{27} kā \sqrt[9]{3^{3}}. Pārvērst no saknes par eksponenciāls formu un atcelt 3 kāpinātājs. Pārvērst atpakaļ par Radical veidlapu.
\sqrt[3]{3}+\sqrt[15]{243}-\sqrt[6]{9}
Ievietot iegūto vērtību atpakaļ izteiksmē.
\sqrt[15]{243}=\sqrt[15]{3^{5}}=3^{\frac{5}{15}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Pārrakstiet \sqrt[15]{243} kā \sqrt[15]{3^{5}}. Pārvērst no saknes par eksponenciāls formu un atcelt 5 kāpinātājs. Pārvērst atpakaļ par Radical veidlapu.
\sqrt[3]{3}+\sqrt[3]{3}-\sqrt[6]{9}
Ievietot iegūto vērtību atpakaļ izteiksmē.
2\sqrt[3]{3}-\sqrt[6]{9}
Savelciet \sqrt[3]{3} un \sqrt[3]{3}, lai iegūtu 2\sqrt[3]{3}.
\sqrt[6]{9}=\sqrt[6]{3^{2}}=3^{\frac{2}{6}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Pārrakstiet \sqrt[6]{9} kā \sqrt[6]{3^{2}}. Pārvērst no saknes par eksponenciāls formu un atcelt 2 kāpinātājs. Pārvērst atpakaļ par Radical veidlapu.
2\sqrt[3]{3}-\sqrt[3]{3}
Ievietot iegūto vērtību atpakaļ izteiksmē.
\sqrt[3]{3}
Savelciet 2\sqrt[3]{3} un -\sqrt[3]{3}, lai iegūtu \sqrt[3]{3}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}