Izrēķināt
1
Sadalīt reizinātājos
1
Koplietot
Kopēts starpliktuvē
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{3}{14}+\frac{5}{4}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Saskaitiet \frac{11}{14} un \frac{1}{4}, lai iegūtu \frac{29}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{41}{28}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Saskaitiet \frac{3}{14} un \frac{5}{4}, lai iegūtu \frac{41}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\frac{29}{28}\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Atņemiet \frac{3}{7} no \frac{41}{28}, lai iegūtu \frac{29}{28}.
\sqrt{\frac{4}{5}\times 0^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Atņemiet \frac{29}{28} no \frac{29}{28}, lai iegūtu 0.
\sqrt{\frac{4}{5}\times 0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Aprēķiniet 0 pakāpē 3 un iegūstiet 0.
\sqrt{0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Reiziniet \frac{4}{5} un 0, lai iegūtu 0.
\sqrt{0+\frac{\frac{9}{4}\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Saskaitiet \frac{3}{2} un \frac{3}{4}, lai iegūtu \frac{9}{4}.
\sqrt{0+\frac{\frac{9}{4}\times \frac{3}{7}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Vienādot daļskaitli \frac{9}{21} līdz mazākajam loceklim, izvelkot un saīsinot 3.
\sqrt{0+\frac{\frac{27}{28}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Reiziniet \frac{9}{4} un \frac{3}{7}, lai iegūtu \frac{27}{28}.
\sqrt{0+\frac{\frac{27}{28}\times \frac{14}{15}\times \frac{5}{3}}{\frac{3}{2}}}
Saskaitiet \frac{11}{15} un \frac{1}{5}, lai iegūtu \frac{14}{15}.
\sqrt{0+\frac{\frac{9}{10}\times \frac{5}{3}}{\frac{3}{2}}}
Reiziniet \frac{27}{28} un \frac{14}{15}, lai iegūtu \frac{9}{10}.
\sqrt{0+\frac{\frac{3}{2}}{\frac{3}{2}}}
Reiziniet \frac{9}{10} un \frac{5}{3}, lai iegūtu \frac{3}{2}.
\sqrt{0+1}
Daliet \frac{3}{2} ar \frac{3}{2}, lai iegūtu 1.
\sqrt{1}
Saskaitiet 0 un 1, lai iegūtu 1.
1
Aprēķināt kvadrātsakni no 1 un iegūt 1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}