Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Koplietot

\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Iegūt \sin(60) vērtības no trigonometrisko vērtību tabulas.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Lai kāpinātu izteiksmi \frac{\sqrt{3}}{2}, kāpiniet gan skaitītāju, gan saucēju atbilstoši pakāpei, un pēc tam veiciet dalīšanu.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\tan(30)\right)^{2}
Iegūt \cos(30) vērtības no trigonometrisko vērtību tabulas.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\tan(30)\right)^{2}
Lai kāpinātu izteiksmi \frac{\sqrt{3}}{2}, kāpiniet gan skaitītāju, gan saucēju atbilstoši pakāpei, un pēc tam veiciet dalīšanu.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}+\left(\tan(30)\right)^{2}
Skaitļa \sqrt{3} kvadrāts ir 3.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Aprēķiniet 2 pakāpē 2 un iegūstiet 4.
\frac{\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Paplašiniet 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\tan(30)\right)^{2}
Tā kā \frac{\left(\sqrt{3}\right)^{2}}{4} un \frac{3}{4} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\frac{\sqrt{3}}{3}\right)^{2}
Iegūt \tan(30) vērtības no trigonometrisko vērtību tabulas.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Lai kāpinātu izteiksmi \frac{\sqrt{3}}{3}, kāpiniet gan skaitītāju, gan saucēju atbilstoši pakāpei, un pēc tam veiciet dalīšanu.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36}+\frac{4\left(\sqrt{3}\right)^{2}}{36}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. 4 un 3^{2} mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 36. Reiziniet \frac{\left(\sqrt{3}\right)^{2}-3}{4} reiz \frac{9}{9}. Reiziniet \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} reiz \frac{4}{4}.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)+4\left(\sqrt{3}\right)^{2}}{36}
Tā kā \frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36} un \frac{4\left(\sqrt{3}\right)^{2}}{36} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{3-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Skaitļa \sqrt{3} kvadrāts ir 3.
\frac{0}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Atņemiet 3 no 3, lai iegūtu 0.
0+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Dalot nulli ar jebkuru skaitli, kas nav nulle, iegūst nulli.
0+\frac{3}{3^{2}}
Skaitļa \sqrt{3} kvadrāts ir 3.
0+\frac{3}{9}
Aprēķiniet 3 pakāpē 2 un iegūstiet 9.
0+\frac{1}{3}
Vienādot daļskaitli \frac{3}{9} līdz mazākajam loceklim, izvelkot un saīsinot 3.
\frac{1}{3}
Saskaitiet 0 un \frac{1}{3}, lai iegūtu \frac{1}{3}.