Izrēķināt
\frac{53}{15}\approx 3,533333333
Viktorīna
Integration
5 problēmas, kas līdzīgas:
\int_{ 0 }^{ 1 } { x }^{ 2 } { \left(x-4 \right) }^{ 2 } d x
Koplietot
Kopēts starpliktuvē
\int _{0}^{1}x^{2}\left(x^{2}-8x+16\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(x-4\right)^{2}.
\int _{0}^{1}x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu x^{2} ar x^{2}-8x+16.
\int x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrēt summu terminu pēc termina.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{4}\mathrm{d}x ar \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+16\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet -8 reiz \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{16x^{3}}{3}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 16 reiz \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-2x^{4}+\frac{x^{5}}{5}
Vienkāršojiet.
\frac{16}{3}\times 1^{3}-2\times 1^{4}+\frac{1^{5}}{5}-\left(\frac{16}{3}\times 0^{3}-2\times 0^{4}+\frac{0^{5}}{5}\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
\frac{53}{15}
Vienkāršojiet.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}