Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int -3x^{2}\left(64\left(x^{3}\right)^{3}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}, lai izvērstu \left(4x^{3}+4\right)^{3}.
\int -3x^{2}\left(64x^{9}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 3, lai iegūtu 9.
\int -3x^{2}\left(64x^{9}+192x^{6}+192x^{3}+64\right)\mathrm{d}x
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 2, lai iegūtu 6.
\int -192x^{11}-576x^{8}-576x^{5}-192x^{2}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu -3x^{2} ar 64x^{9}+192x^{6}+192x^{3}+64.
\int -192x^{11}\mathrm{d}x+\int -576x^{8}\mathrm{d}x+\int -576x^{5}\mathrm{d}x+\int -192x^{2}\mathrm{d}x
Integrēt summu terminu pēc termina.
-192\int x^{11}\mathrm{d}x-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
-16x^{12}-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{11}\mathrm{d}x ar \frac{x^{12}}{12}. Reiziniet -192 reiz \frac{x^{12}}{12}.
-16x^{12}-64x^{9}-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{8}\mathrm{d}x ar \frac{x^{9}}{9}. Reiziniet -576 reiz \frac{x^{9}}{9}.
-16x^{12}-64x^{9}-96x^{6}-192\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{5}\mathrm{d}x ar \frac{x^{6}}{6}. Reiziniet -576 reiz \frac{x^{6}}{6}.
-16x^{12}-64x^{9}-96x^{6}-64x^{3}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet -192 reiz \frac{x^{3}}{3}.
-64x^{3}-96x^{6}-64x^{9}-16x^{12}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.