Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int \frac{x\left(x-2\right)\left(x+2\right)\left(x^{2}+5\right)}{x+2}\mathrm{d}x
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{x^{5}+x^{3}-20x}{x+2}.
\int x\left(x-2\right)\left(x^{2}+5\right)\mathrm{d}x
Saīsiniet x+2 gan skaitītājā, gan saucējā.
\int x^{4}-2x^{3}+5x^{2}-10x\mathrm{d}x
Izvērsiet izteiksmi.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -10x\mathrm{d}x
Integrēt summu terminu pēc termina.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{4}\mathrm{d}x ar \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet -2 reiz \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-10\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 5 reiz \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}. Reiziniet -10 reiz \frac{x^{2}}{2}.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
Vienkāršojiet.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.