Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int 3x^{5}-2x^{3}+x\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int 3x^{5}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrēt summu terminu pēc termina.
3\int x^{5}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{6}}{2}-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{5}\mathrm{d}x ar \frac{x^{6}}{6}. Reiziniet 3 reiz \frac{x^{6}}{6}.
\frac{x^{6}}{2}-\frac{x^{4}}{2}+\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet -2 reiz \frac{x^{4}}{4}.
\frac{x^{6}-x^{4}+x^{2}}{2}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}.
\frac{4^{6}}{2}-\frac{4^{4}}{2}+\frac{4^{2}}{2}-\left(\frac{2^{6}}{2}-\frac{2^{4}}{2}+\frac{2^{2}}{2}\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
1902
Vienkāršojiet.