Izrēķināt
\frac{1981}{3}\approx 660,333333333
Koplietot
Kopēts starpliktuvē
\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
Lietojiet Ņūtona binomu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, lai izvērstu \left(x^{3}+5\right)^{2}.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 2, lai iegūtu 6.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu x^{6}+10x^{3}+25 ar 3.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu 3x^{6}+30x^{3}+75 ar x^{2}.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
Integrēt summu terminu pēc termina.
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{8}\mathrm{d}x ar \frac{x^{9}}{9}. Reiziniet 3 reiz \frac{x^{9}}{9}.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{5}\mathrm{d}x ar \frac{x^{6}}{6}. Reiziniet 30 reiz \frac{x^{6}}{6}.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 75 reiz \frac{x^{3}}{3}.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
\frac{1981}{3}
Vienkāršojiet.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}