Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Lietojiet Ņūtona binomu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, lai izvērstu \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Integrēt summu terminu pēc termina.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet 64 reiz \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet -144 reiz \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}. Reiziniet 108 reiz \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Atrast -27, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
4305
Vienkāršojiet.