Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int 2x^{2}+x\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrēt summu terminu pēc termina.
2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{2x^{3}}{3}+\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 2 reiz \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}.
\frac{2}{3}\times 2^{3}+\frac{2^{2}}{2}-\left(\frac{2}{3}\left(-1\right)^{3}+\frac{\left(-1\right)^{2}}{2}\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
\frac{15}{2}
Vienkāršojiet.