Izrēķināt
32x^{5}+180x^{4}+360x^{3}+270x^{2}+С
Diferencēt pēc x
20x\left(2x+3\right)^{3}
Koplietot
Kopēts starpliktuvē
\int 20x\left(8x^{3}+36x^{2}+54x+27\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}, lai izvērstu \left(2x+3\right)^{3}.
\int 160x^{4}+720x^{3}+1080x^{2}+540x\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu 20x ar 8x^{3}+36x^{2}+54x+27.
\int 160x^{4}\mathrm{d}x+\int 720x^{3}\mathrm{d}x+\int 1080x^{2}\mathrm{d}x+\int 540x\mathrm{d}x
Integrēt summu terminu pēc termina.
160\int x^{4}\mathrm{d}x+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
32x^{5}+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{4}\mathrm{d}x ar \frac{x^{5}}{5}. Reiziniet 160 reiz \frac{x^{5}}{5}.
32x^{5}+180x^{4}+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet 720 reiz \frac{x^{4}}{4}.
32x^{5}+180x^{4}+360x^{3}+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 1080 reiz \frac{x^{3}}{3}.
32x^{5}+180x^{4}+360x^{3}+270x^{2}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}. Reiziniet 540 reiz \frac{x^{2}}{2}.
270x^{2}+360x^{3}+180x^{4}+32x^{5}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}