Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int 20x\left(8x^{3}+36x^{2}+54x+27\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}, lai izvērstu \left(2x+3\right)^{3}.
\int 160x^{4}+720x^{3}+1080x^{2}+540x\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu 20x ar 8x^{3}+36x^{2}+54x+27.
\int 160x^{4}\mathrm{d}x+\int 720x^{3}\mathrm{d}x+\int 1080x^{2}\mathrm{d}x+\int 540x\mathrm{d}x
Integrēt summu terminu pēc termina.
160\int x^{4}\mathrm{d}x+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
32x^{5}+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{4}\mathrm{d}x ar \frac{x^{5}}{5}. Reiziniet 160 reiz \frac{x^{5}}{5}.
32x^{5}+180x^{4}+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet 720 reiz \frac{x^{4}}{4}.
32x^{5}+180x^{4}+360x^{3}+540\int x\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}. Reiziniet 1080 reiz \frac{x^{3}}{3}.
32x^{5}+180x^{4}+360x^{3}+270x^{2}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}. Reiziniet 540 reiz \frac{x^{2}}{2}.
270x^{2}+360x^{3}+180x^{4}+32x^{5}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.