Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, lai izvērstu \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, lai izvērstu \left(x-1\right)^{2}.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet -3x^{2} un x^{2}, lai iegūtu -2x^{2}.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet 3x un -2x, lai iegūtu x.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Saskaitiet -1 un 1, lai iegūtu 0.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu x ar 4-x.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu 4x-x^{2} ar 4+x un apvienotu līdzīgos locekļus.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet x un 16x, lai iegūtu 17x.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet x^{3} un -x^{3}, lai iegūtu 0.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Kāpiniet 8-x-x^{2} kvadrātā.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet -2x^{2} un -15x^{2}, lai iegūtu -17x^{2}.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Savelciet 17x un -16x, lai iegūtu x.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu x^{2} ar 17-x^{2}.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
Savelciet -17x^{2} un 17x^{2}, lai iegūtu 0.
\int x-x+2x^{3}+64\mathrm{d}x
Savelciet x^{4} un -x^{4}, lai iegūtu 0.
\int 2x^{3}+64\mathrm{d}x
Savelciet x un -x, lai iegūtu 0.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Integrēt summu terminu pēc termina.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet 2 reiz \frac{x^{4}}{4}.
\frac{x^{4}}{2}+64x
Atrast 64, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}x=ax.
64x+\frac{x^{4}}{2}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.