Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int 8\left(x^{3}\right)^{3}+60\left(x^{3}\right)^{2}+150x^{3}+125\mathrm{d}x
Lietojiet Ņūtona binomu \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}, lai izvērstu \left(2x^{3}+5\right)^{3}.
\int 8x^{9}+60\left(x^{3}\right)^{2}+150x^{3}+125\mathrm{d}x
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 3, lai iegūtu 9.
\int 8x^{9}+60x^{6}+150x^{3}+125\mathrm{d}x
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 3 un 2, lai iegūtu 6.
\int 8x^{9}\mathrm{d}x+\int 60x^{6}\mathrm{d}x+\int 150x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Integrēt summu terminu pēc termina.
8\int x^{9}\mathrm{d}x+60\int x^{6}\mathrm{d}x+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{4x^{10}}{5}+60\int x^{6}\mathrm{d}x+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{9}\mathrm{d}x ar \frac{x^{10}}{10}. Reiziniet 8 reiz \frac{x^{10}}{10}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{6}\mathrm{d}x ar \frac{x^{7}}{7}. Reiziniet 60 reiz \frac{x^{7}}{7}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+\frac{75x^{4}}{2}+\int 125\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet 150 reiz \frac{x^{4}}{4}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+\frac{75x^{4}}{2}+125x
Atrast 125, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}x=ax.
125x+\frac{75x^{4}}{2}+\frac{60x^{7}}{7}+\frac{4x^{10}}{5}
Vienkāršojiet.
125x+\frac{75x^{4}}{2}+\frac{60x^{7}}{7}+\frac{4x^{10}}{5}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.