Izrēķināt
\frac{51488x}{16875}
Diferencēt pēc x
\frac{51488}{16875} = 3\frac{863}{16875} = 3,051140740740741
Graph
Koplietot
Kopēts starpliktuvē
\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Daliet x ar \frac{3}{9}, reizinot x ar apgriezto daļskaitli \frac{3}{9} .
x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Daliet x\times 9 ar 3, lai iegūtu x\times 3.
x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Izsakiet \frac{\frac{x}{25}}{100} kā vienu daļskaitli.
x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Reiziniet 25 un 100, lai iegūtu 2500.
\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Savelciet x\times 3 un \frac{x}{2500}, lai iegūtu \frac{7501}{2500}x.
\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90}
Izsakiet \frac{\frac{x}{2}}{10} kā vienu daļskaitli.
\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90}
Reiziniet 2 un 10, lai iegūtu 20.
\frac{3813}{1250}x+\frac{\frac{x}{15}}{90}
Savelciet \frac{7501}{2500}x un \frac{x}{20}, lai iegūtu \frac{3813}{1250}x.
\frac{3813}{1250}x+\frac{x}{15\times 90}
Izsakiet \frac{\frac{x}{15}}{90} kā vienu daļskaitli.
\frac{3813}{1250}x+\frac{x}{1350}
Reiziniet 15 un 90, lai iegūtu 1350.
\frac{51488}{16875}x
Savelciet \frac{3813}{1250}x un \frac{x}{1350}, lai iegūtu \frac{51488}{16875}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Daliet x ar \frac{3}{9}, reizinot x ar apgriezto daļskaitli \frac{3}{9} .
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Daliet x\times 9 ar 3, lai iegūtu x\times 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Izsakiet \frac{\frac{x}{25}}{100} kā vienu daļskaitli.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Reiziniet 25 un 100, lai iegūtu 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Savelciet x\times 3 un \frac{x}{2500}, lai iegūtu \frac{7501}{2500}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90})
Izsakiet \frac{\frac{x}{2}}{10} kā vienu daļskaitli.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90})
Reiziniet 2 un 10, lai iegūtu 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{\frac{x}{15}}{90})
Savelciet \frac{7501}{2500}x un \frac{x}{20}, lai iegūtu \frac{3813}{1250}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{15\times 90})
Izsakiet \frac{\frac{x}{15}}{90} kā vienu daļskaitli.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{1350})
Reiziniet 15 un 90, lai iegūtu 1350.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{51488}{16875}x)
Savelciet \frac{3813}{1250}x un \frac{x}{1350}, lai iegūtu \frac{51488}{16875}x.
\frac{51488}{16875}x^{1-1}
ax^{n} atvasinājums ir nax^{n-1}.
\frac{51488}{16875}x^{0}
Atņemiet 1 no 1.
\frac{51488}{16875}\times 1
Jebkuram loceklim t, izņemot 0, t^{0}=1.
\frac{51488}{16875}
Jebkuram loceklim t t\times 1=t un 1t=t.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}