Izrēķināt
\frac{2239414914709979136}{767409801483154296875}\approx 0,002918147
Sadalīt reizinātājos
\frac{2 ^ {50} \cdot 3 ^ {2} \cdot 13 \cdot 17}{5 ^ {27} \cdot 103} = 0,0029181473971037586
Koplietot
Kopēts starpliktuvē
\frac{663\times 10^{-26}\times 3}{515\times 16^{-19}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet -34 un 8, lai iegūtu -26.
\frac{663\times \frac{1}{100000000000000000000000000}\times 3}{515\times 16^{-19}}
Aprēķiniet 10 pakāpē -26 un iegūstiet \frac{1}{100000000000000000000000000}.
\frac{\frac{663}{100000000000000000000000000}\times 3}{515\times 16^{-19}}
Reiziniet 663 un \frac{1}{100000000000000000000000000}, lai iegūtu \frac{663}{100000000000000000000000000}.
\frac{\frac{1989}{100000000000000000000000000}}{515\times 16^{-19}}
Reiziniet \frac{663}{100000000000000000000000000} un 3, lai iegūtu \frac{1989}{100000000000000000000000000}.
\frac{\frac{1989}{100000000000000000000000000}}{515\times \frac{1}{75557863725914323419136}}
Aprēķiniet 16 pakāpē -19 un iegūstiet \frac{1}{75557863725914323419136}.
\frac{\frac{1989}{100000000000000000000000000}}{\frac{515}{75557863725914323419136}}
Reiziniet 515 un \frac{1}{75557863725914323419136}, lai iegūtu \frac{515}{75557863725914323419136}.
\frac{1989}{100000000000000000000000000}\times \frac{75557863725914323419136}{515}
Daliet \frac{1989}{100000000000000000000000000} ar \frac{515}{75557863725914323419136}, reizinot \frac{1989}{100000000000000000000000000} ar apgriezto daļskaitli \frac{515}{75557863725914323419136} .
\frac{2239414914709979136}{767409801483154296875}
Reiziniet \frac{1989}{100000000000000000000000000} un \frac{75557863725914323419136}{515}, lai iegūtu \frac{2239414914709979136}{767409801483154296875}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}