Izrēķināt
\frac{369}{50}=7,38
Sadalīt reizinātājos
\frac{3 ^ {2} \cdot 41}{2 \cdot 5 ^ {2}} = 7\frac{19}{50} = 7,38
Koplietot
Kopēts starpliktuvē
\frac{0\times \frac{-1}{2}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 0 un 4, lai iegūtu 0.
\frac{0\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Daļskaitli \frac{-1}{2} var pārrakstīt kā -\frac{1}{2} , izvelkot negatīvo zīmi.
\frac{0+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 0 un -\frac{1}{2}, lai iegūtu 0.
\frac{0+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Aprēķiniet \frac{5}{6} pakāpē -2 un iegūstiet \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Saskaitiet 0 un \frac{36}{25}, lai iegūtu \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Aprēķiniet 2 pakāpē -1 un iegūstiet \frac{1}{2}.
\frac{\frac{36}{25}}{\left(1\times 2\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Daliet 1 ar \frac{1}{2}, reizinot 1 ar apgriezto daļskaitli \frac{1}{2} .
\frac{\frac{36}{25}}{2^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 1 un 2, lai iegūtu 2.
\frac{\frac{36}{25}}{\frac{1}{2}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Aprēķiniet 2 pakāpē -1 un iegūstiet \frac{1}{2}.
\frac{36}{25}\times 2+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Daliet \frac{36}{25} ar \frac{1}{2}, reizinot \frac{36}{25} ar apgriezto daļskaitli \frac{1}{2} .
\frac{72}{25}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet \frac{36}{25} un 2, lai iegūtu \frac{72}{25}.
\frac{72}{25}+\frac{2\times 10^{-6}}{10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Saīsiniet 567 gan skaitītājā, gan saucējā.
\frac{72}{25}+2\times 10^{1}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Lai dalītu vienas bāzes pakāpes, atņemiet saucēja kāpinātāju no skaitītāja kāpinātāja.
\frac{72}{25}+2\times 10\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Aprēķiniet 10 pakāpē 1 un iegūstiet 10.
\frac{72}{25}+20\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 2 un 10, lai iegūtu 20.
\frac{72}{25}+20\times 0^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 0 un 1, lai iegūtu 0.
\frac{72}{25}+20\times 0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Aprēķiniet 0 pakāpē 2 un iegūstiet 0.
\frac{72}{25}+0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Reiziniet 20 un 0, lai iegūtu 0.
\frac{72}{25}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Saskaitiet \frac{72}{25} un 0, lai iegūtu \frac{72}{25}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Atņemiet \frac{1}{2} no 1, lai iegūtu \frac{1}{2}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
Daļskaitli \frac{-1}{4} var pārrakstīt kā -\frac{1}{4} , izvelkot negatīvo zīmi.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Atņemiet 2 no -\frac{1}{4}, lai iegūtu -\frac{9}{4}.
\frac{72}{25}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Daliet \frac{1}{2} ar -\frac{9}{4}, reizinot \frac{1}{2} ar apgriezto daļskaitli -\frac{9}{4} .
\frac{72}{25}-\left(-\frac{2}{9}\right)^{-1}
Reiziniet \frac{1}{2} un -\frac{4}{9}, lai iegūtu -\frac{2}{9}.
\frac{72}{25}-\left(-\frac{9}{2}\right)
Aprēķiniet -\frac{2}{9} pakāpē -1 un iegūstiet -\frac{9}{2}.
\frac{72}{25}+\frac{9}{2}
Skaitļa -\frac{9}{2} pretstats ir \frac{9}{2}.
\frac{369}{50}
Saskaitiet \frac{72}{25} un \frac{9}{2}, lai iegūtu \frac{369}{50}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}